Cellular Interactions and Formation of an Epithelial “Nanocoating-Like Barrier” with Mesoporous Silica Nanoparticles

نویسندگان

  • Xuan Li
  • Ka Yan Pang
  • Tsz Wing Ng
  • Ping Chung Leung
  • Cheng Fei Zhang
  • Ken Cham-Fai Leung
  • Lijian Jin
چکیده

Oral mucosa as the front-line barrier in the mouth is constantly exposed to a complex microenvironment with multitudinous microbes. In this study, the interactions of mesoporous silica nanoparticles (MSNs) with primary human gingival epithelial cells were analyzed for up to 72 h, and their diffusion capacity in the reconstructed human gingival epithelia (RHGE) and porcine ear skin models was further assessed at 24 h. It was found that the synthesized fluorescent mesoporous silica nanoparticles (RITC-NPs) with low cytotoxicity could be uptaken, degraded, and/or excreted by the human gingival epithelial cells. Moreover, the RITC-NPs penetrated into the stratum corneum of RHGE in a time-dependent manner, while they were unable to get across the barrier of stratum corneum in the porcine ear skins. Consequently, the penetration and accumulation of RITC-NPs at the corneum layers of epithelia could form a "nanocoating-like barrier". This preliminary proof-of-concept study suggests the feasibility of developing nanoparticle-based antimicrobial and anti-inflammatory agents through topical application for oral healthcare.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization

The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully ...

متن کامل

Application of mesoporous silica nanoparticles for drug delivery to cancer cells

Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...

متن کامل

Synthesis of mesoporous silica nanobamboo with highly dispersed tungsten carbide nanoparticles.

By controlling the interaction between cationic surfactant micelles and ammonium metatungstate during the formation of mesoporous silica structure, highly dispersed tungsten carbide (WC) nanoparticles of 2.0 nm in diameter on mesoporous silica nanospheres were synthesized at lower concentration of ammonium metatungstate. With additional ammonium metatungstate, a novel mesoporous silica nanobamb...

متن کامل

The effect of mesoporous silica nanoparticles loaded with epirubicin on drug-resistant cancer cells

Objective (s): In chemotherapy for cancer treatment, the cell resistance to multiple anticancer drugs is the major clinical problem. In the present study, mesoporous silica nanoparticles (MSNs) were used as a carrier for epirubicin (EPI) in order to improve the cytotoxic efficacy of this drug against the P-glycoprotein (P-gp) overexpressing cell line. Materials and Methods: MSNs with phosphonat...

متن کامل

Mesoporous Silica Nanoparticles as a Nanocarrier for Delivery of Vitamin C

Background: In the last decades, mesoporous silica nanoparticles (MSN) are improved for drug delivery, imaging, and biomedical applications due to their special properties such as large surface area, high drug loading capacity, tunable pore size, and modification of surface area by functional groups. Objectives: The aim of this study was to evaluate MSNs as carriers for oral colon-specific and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016